CISA
CYBERSECURITY

ADVISORY
COMMITTEE

DRAFT REPORT TO THE CISA DIRECTOR
Building Resilience and Reducing Systemic Risk to Critical Infrastructure

December 5, 2023

Introduction

The Cybersecurity and Infrastructure Security Agency (CISA) Cybersecurity Advisory Committee (CSAC) established a
Building Resilience and Reducing Systemic Risk to Critical Infrastructure (SR) subcommittee (hereinafter referred to as
the “Subcommittee”) to enhance national resiliency.

In March 2023, the Subcommittee was tasked with providing a critical infrastructure perspective to inform these efforts.
The Subcommittee tasking document also included the following tasking questions to guide the Subcommittee’s work:

1. How can the governance, processes, and analysis in CISA’s National Critical Infrastructure Risk Register create
the greatest opportunity for risk reduction?

2. What risk information would help private sector entities, especially Systemically Important Entities (SIEs), plan
and execute risk reduction measures?

3. How can CISA incentivize close collaboration between SIEs and the U.S. government on their security and
resilience?

In September 2023, the Subcommittee provided CISA with initial recommendations on the attributes for the architecture
of a sector’s operational collaboration model and the tactical elements that can produce an effective architecture and
capabilities.

There are three key principles which should be reflected in the architecture of a sector’s operational collaboration model.

1. Risk Analysis and Mitigation - Enables a deeper understanding of how the emerging threats might impact how
systemically important functions (i.e., National Critical Functions (NCFs)) operate, including business and technical
underpinnings, as well as national security impacts of compromise.

2. lllumination of the Battlefield - Provides early insights or warning capability of adversary’s intent/capability to set the
direction that industry and government should take to address these risks. Drives a risk-informed intelligence collection
and analysis apparatus that integrates the capabilities and accesses of private sector and government organizations.

3. Integrated Response - Enables government and critical infrastructure to respond to an event by collaborating and
sharing information about attacks and risk mitigating actions to change the trajectory of our country’s and industry’s
collective defense, response, and resilience.

Findings
The following is a supplement to the September 2023 report that provides recommendations for:

1. Building an Operational Collaboration Framework.
2. Designing an Operational Collaboration Maturity Model.

Also included are model architectures for Operational Collaboration.
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Build an Operational Collaboration Framework: There is no United States Government (USG) policy providing a standard
or definition for operational collaboration or outlining its component parts. Standards and best practices need to be
established for stakeholders to be aligned. Critically, operational collaboration is not a solitary thing, but rather the sum
of component efforts. Decomposing the functions and capabilities that comprise operational collaboration requires
focused public-private effort.

Different sectors have applied varying mechanisms to engage with the USG in the three principles outlined above, with
varying emphasis on the current areas focus of efforts. For instance, within the Communications Sector, strategic or
longer-term risks are addressed at the CEO or CTO level within the President’s National Security Telecommunications
Advisory Committee (NSTAC) and the NSA/CISA Enduring Security Framework venue. Risk mitigation and analysis efforts
are generally coordinated through the Sector Coordinating Council in various Critical Infrastructure Partnership Advisory
Council (CIPAC) venues such as the Information & Communications Technology Supply Chain Risk Management Task
Force, which is closely aligned with the NRMC efforts and Joint Cyber Defense Collaborative. Finally, more tactical
incident responses are primarily under the purview of the National Coordinating Center / Communications Information
Sharing & Analysis Center, which works with Emergency Support Function 2, and cyber collaboration is manifested in the
NSA Cyber Collaboration Center. This approach within the Communications Sector reflects the varying expert input
required for these efforts while ensuring these efforts are aligned through the commonality of private sector company
participation. This is not to suggest that this architecture is appropriate for all Sectors, but it does align the direction set
by CEO-level direction with risk manager engagement and response level implementation.

In the Financial Services Sector, strategic or longer-term risks are addressed at the Financial Services Sector
Coordinating Council (FSSCC), which promotes security and resilience of the sector by promoting best practices and the
development of effective policies. In addition, the financial regulators work together along with Treasury through the
Financial and Banking Information Infrastructure Committee (FBIIC) to coordinate with the FSSCC on critical
infrastructure resilience issues, including efforts related to information sharing, best practices, and incident response.
The Financial Services Information Sharing Analysis Center (FS-ISAC) shares specific information pertaining to
cybersecurity and physical risks and distributes recommendations for protective measures and practices to institutions
across the sector. The Analysis & Resilience Center for Systemic Risk (ARC), which partners with the US Treasury and
Intelligence Community, supports risk mitigation by analyzing systemic risk issues and developing solution opportunities
for the industry. Financial sector trade associations, in addition to their public policy roles, also play operational
functions supporting the sector.

CISA, as National Coordinator should work with critical infrastructure and the NIST National Cybersecurity Center of
Excellence (NCCoE) on a project with the goal of (1) defining Operational Collaboration for the USG, and (2) laying out a
Maturity Model—a system that accurately measures the maturity of operational collaboration for each sector/subsector
that takes into consideration the unique characteristics and needs of each.

Recommendations

CISA should create a framework that:

e Makes explicit and emphasizes the need to incentivize collaboration with increased transparency on the roles
and responsibilities, capabilities, and authorities of the private and public sector partners involved.

e Is broad and flexible enough to include all 16 critical infrastructure sectors/subsectors. The sectors are
organized differently and have unique priorities and diverse needs. A standard should take those differences
into consideration.

e Aligns with similar standards used by the USG to coordinate responses to physical threats (i.e., FEMA’s National
Preparedness System and National Response Framework).
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e Is based on a cybersecurity response to a disruption no matter the cause (e.g., the cybersecurity repercussions
of a natural disaster, etc.).

e Encompasses steady state and incident response collaboration.

e Recognizes the differences between the ways different USG agencies collaborate with the private sector and
clarifies the roles in those relationships.

e Outlines a mechanism for governance.

o Describes what successful collaboration looks like at the strategic, risk mitigation, and operational levels.
Include the public policy efforts that levels.

CISA should create a maturity model that:

e Measures Cybersecurity Collaboration at risk, strategic, operational and public policy levels.

o Defines the planning horizons associated with each level of collaboration (e.g., risk is immediate/crises
response, strategic is planning for likely incidents, operational is continual partnership, etc.).

e Includes steady state and incident response collaboration.

o Defines maturity as a repeatable process.

e Includes guidance on successful governance structures.

The CSAC continues to work and support CISA’s development of new systems to identify and mitigate systemic risk to our
nation’s cyber and physical infrastructure. The heart of this work has been to operationalize the proposed collaboration
between the private sector and the federal government. The recommendations provided, three sets to date, seek to
illustrate this constructive collaboration. A change in legislation and authorities may be needed to overcome roadblocks
for collaboration, information sharing and private-public sector partnerships.

CISA Cybersecurity Advisory Committee (CSAC)
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Appendix A:
The following SR subcommittee members participated in the study and recommendations documented in this report.

Tom Fanning, SR Subcommittee Chair, Southern Company
Marene Allison, Former Johnson & Johnson

Lori Beer, JPMorgan Chase

Rahul Jalali, Union Pacific

Jim Langevin, Former U.S. House of Representatives

Cathy Lanier, National Football League

Kevin Mandia, Mandiant

Suzanne Spaulding, Center for Strategic and International Studies
Alicia Tate-Nadeau, lllinois Emergency Management Agency

Appendix B: Sample Operational Collaboration Architectures
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Financial Services Sector Architecture

Cybersecurity Operational Collaboration Architecture
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Electricity Subsector Architecture
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DRAFT REPORT TO THE CISA DIRECTOR
Technical Advisory Council
Memory Safety

December 5, 2023

Introduction

This report explores how CISA can engage in improving the resilience of computer, network, embedded, and consumer
systems by taking advantage of, and promoting, memory safe technologies.

When memory is written or read in the wrong space or time, memory corruption can occur and lead to low-level
vulnerabilities that can be exploited to compromise a system. Improving memory safety is a strategy to reduce the
number of vulnerabilities capable of being exploited, thereby decreasing the risks of the technologies that society relies
on to operate. This report focuses on memory safety, and specifically memory safe languages suitable for use in systems
development.

Background

Vulnerabilities are constantly discovered, both by those working to improve system security, and by those attacking it. By
gathering statistics and anecdotal evidence a pattern emerges: Memory safety accounts for approximately 70% of
reported security issues according to Microsoft [1] and Google Chrome [2]. According to the public zero-day tracker 2021
[3] had the highest number of zero-day exploits on record with 88, the majority due to memory safety issues. This
memory safety issue persists despite widespread use of security techniques such as vulnerability fuzzing, secure
software development lifecycle processes, static code analysis, and penetration testing.

In other words, based on today's understanding, there is a 70/30 rule: 70% of all vulnerabilities reported to Microsoft
and Google are due to memory safety issues, and 30% are in other categories, such as logic flaws. An important caveat
to understand is that this trend does not necessarily hold for exploited vulnerabilities. We can reason about
vulnerabilities as potential risk whereas the implementation of an exploit is an actualized risk.

The Problem of Memory Safety

Memory safety is an age-old problem with the first large scale internet worm leveraging a stack-overflow in the unix finger
daemon in 1988 [4]. To understand the problem of mitigating memory safety risks, it is important to understand the
broad categories of memory vulnerabilities, Spatial and Temporal, the broad categories of solutions, Probabilistic or
Deterministic, and the major categories of programming languages, System and Non-system.

The primary focus for defenders over the last 20 years has been to address memory safety by targeting protections
against individual exploit techniques and their variants rather than focusing on the underlying classes of vulnerabilities
that make the exploits possible in the first place.

Exploit mitigation techniques like Address Layout Randomization (ASLR), Stack Cookies, and Control Flow Integrity (CFl)
succeeded in temporarily driving up costs for exploitation but have failed to disrupt exploit development overall as
evidenced by the ongoing linear growth in known memory safety exploits [5] with 2023 on track to be the highest year on
record.

8 CISA Cybersecurity Advisory Committee (CSAC)
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To address the issue of memory corruption exploits, and to break the cycle of forever adding specific exploit mitigations
which introduce their own complexity and cost, a new strategy which focuses on defeating the vulnerability class itself is
necessary. An approach which addresses all known classes with deterministic protection can be called memory safe and
is the most promising way forward for long term software safety.

Memory Safe Languages

There are many languages that provide type and memory safety guarantees. Some of the most popular languages in use
today such as JavaScript, Python, and Java provide memory or type safety by default, and their use comprises a majority
of software development [6][7]. Unfortunately bypassing these protections is common when interoperability is required
with legacy C/C++libraries or performance reasons.

In these languages memory safety is enforced by interpreters or virtual machines at runtime which comes at the cost of
performance and resource efficiency. This has limited widespread use of memory safe languages to use cases where
performance is not the most important factor. Key pieces of software such as Web Browsers, Office Applications, and
Operating Systems are generally still implemented in so-called “native” languages such as C/C++ for performance and
efficiency reasons.

A new generation of memory safe but high-performance memory safety languages has changed this trade-off calculus.
Memory Safe Systems Languages (MSSL) such as Rust, Golang, and Swift have been used as system languages which
can meet stringent performance and efficiency requirements while still maintaining memory safety. It is this new
development that has seen the security and development community push for more widespread use of systems level
memory safe languages.

The clear north star for security against memory corruption exploits is the broad usage of Memory Safe Languages that
provide intrinsic, deterministic memory safety with performance and efficiency that make them practical for low-level and
systems applications. Anything less is playing the whack-a-mole of exploit mitigation.

Spatial and Temporal

When considering the memory safety of a program there are two broad categories, Spatial and Temporal Memory safety
[81[9]]. Developers employ many different strategies to try and protect against attacks against these two categories. For a
program to have complete protection both categories must be protected against, in either software, hardware or a
combination of both.

Spatial Memory Safety issues result from memory accesses performed outside of the "correct" bounds established for
variables and objects in memory. Examples of spatial safety issues include stack or heap-based buffer overflows where
adjacent memory is overwritten. Often, this exploitation of spatial memory safety issues directly overwrites objects in
memory with attacker-controlled data leading to system compromise. An example of this would be a buffer overflow.
Essentially you are writing or reading in the wrong space.

Temporal Memory Safety violations arise when memory is accessed outside of time or state, such as accessing object
data after the object is freed. It could also happen when memory accesses are unexpectedly interleaved, such as when
critical sections fail to properly lock which leads to concurrent data access. This can enable code execution or other
security impacts when an attacker can replace memory with an unexpected state such as a pointer to memory containing
malicious code. This is often achieved with techniques that cause the behavior or state of dynamic data structures such
as the heap to become more predictable. Essentially you are reading or writing memory at the wrong point in time.

A variant of temporal safety issues can occur without violating object lifetimes, such as concurrent tasks concurrently
accessing valid data with insufficient locking. For the purposes of this paper, we include these issues in Temporal Safety.

9 CISA Cybersecurity Advisory Committee (CSAC)
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Both overarching categories, Spatial and Temporal, include, in turn, numerous "classes" of bugs that share common
underlying characteristics. In general, these characteristics are associated with Common Weakness Enumeration (CWE)
entries maintained by MITRE [10]

Categorization of Memory Safety Issues

Understanding the root-cause of memory corruption issues at a granular level is important when evaluating approaches
to achieve memory safety. Each specific subclass of temporal and spatial issues may require specific solutions or imply
less expensive and more practical solutions. Common discourse around memory safety strategies is often binary and
focus on languages which are known to be completely memory safe (e.g. Rust). This approach can limit the investment in
practical and effective solutions for eliminating bug classes in existing C/C++ code. The chart below provides the
granular root-cause-analysis (RCA) for memory safety issues reported to Microsoft.

Root Cause of Memory Safety CVEs by Patch Year

2015 2016 2017 2018 2019 2020 2021 2022

mHeap Corruption = Heap OOBRead  w Other - Stack Corruption = Type Confusion = Uninitialized Use  m Use After Free

This data provides useful framing for the specific bug classes and their relative population in a common operating
system. The TAC utilized this data to evaluate the relative impact and priority of recommendations throughout the
document.

It is possible to pursue different technological approaches over time, each capable of reducing the percentage of memory
safety vulnerabilities, with some eliminating a bug class entirely. Adopting memory safe technologies will reduce the
number of vulnerabilities that can be considered a potential risk, and a drop in potential risk is expected to limit the
number of exploits which can be thought of as actualized risk. This is because the pool of potential vulnerabilities to
exploit is significantly smaller.

10 CISA Cybersecurity Advisory Committee (CSAC)



CISA
CYBERSECURITY

ADVISORY
COMMITTEE

Probabilistic vs. Deterministic vs. Some of both

Memory protections (and mitigations in general) can be categorized as either Probabilistic or Deterministic.

Probabilistic memory protection is where protection against an unexpected behavior is likely but not guaranteed. This can
occur for performance reasons such as having a security check that is asynchronous to avoid blocking.

An example of Probabilistic memory safety protection is GWP-ASan. GWP-ASan [11][12] performs tracking of userspace
heap allocations. When GWP-ASan detects an error, it records a crash report and terminates the process. The bug reports
contain additional allocation and deallocation information that make it easier to identify the root cause. For mobile
devices that have limited resources GWP-ASan is randomly enabled at start-up for 1% of system processes, and in
dedicated server infrastructure GWP-Asan could be enabled 100% of the time.

Attackers that need near certainty that their attacks will succeed and not be detected may be deterred by probabilistic
defenses that allow for a low chance of success, and a successful attack may require defeating more than a single
defense increasing the probability of detection even more. Because of these considerations Probabilistic protections,
while not absolute like deterministic, can provide both a deterrent and a method, such as GWP-ASan, for detecting when
an attack has failed. This creates an opportunity for the software developer to detect and improve their protections.

Probabilistic protection can in some cases be bypassed without being detected, either with brute force techniques or with
the help of additional information leak vulnerabilities, where the underlying applications do not crash or report the
attempts. Clever attackers will target where disruption (causing a crash) or detection are least likely.

An example of a Deterministic memory safety protection would be an application written entirely in a MSSL without using
any unsafe exceptions. The language provides for security guarantees of temporal and spatial memory protection. For
example, with Rust’s guaranteed ownership semantics when a dynamically allocated value is freed ownership is
relinquished. Any subsequent attempts to use the value will produce an error. Spatial memory safety problems such as
off-by-one, stack-based buffer overflow are not possible.

There exist situations where a technology does not cleanly provide either one or the other type of protection, but
combination of both Probabilistic and Deterministic. For example, some Memory Tagging (MT) protections can be seen as
both deterministic and probabilistic. For linear buffer overflows MT can be used as a deterministic protection [13] as well
as for heap-use-after-free if combined with an additional GC-like pass [14]. For non-linear buffer overflows MT provides
only a probabilistic protection, such that a given instance of a bug will be detected with ~90% probability.

Currently Arm has introduced Memory Tagging Extensions (MTE) in hardware which Google recently implemented in their
Pixel 8 [15]. Apple is possibly working to implement their version [16] as well. MTE is clearly emerging as an improvement
to current strategies but should not be considered as a replacement for the use of MSSL.

Systems Languages vs. Non-Systems Languages

Systems languages are used by operating systems, mobile and embedded device manufactures as well as cloud
providers, aerospace, and in situations where performance and efficiency are of primary importance. Historically classical
systems languages such as C and C++ were chosen primarily for their efficiency, performance, and flexibility but traded
off inherent memory safety for performance. These languages, and others not mentioned, are generally accepted as
providing performance advantages over classic interpreted or managed languages such as Java, C#, or Python and thus
can be used for low level use cases.

Non-Systems languages would be exemplified by the classic managed languages that are suitable for “high level”

development scenarios which don’t have strict performance requirements, and existing software developers with
experience in these languages can continue to safely use them.

11 CISA Cybersecurity Advisory Committee (CSAC)
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For systems scenarios, MSSL provides a clear value from a security standpoint as they categorically eliminate a range of
memory safety bugs using a combination of static and dynamic enforcement. Each MSSL will have its own strengths and
weaknesses to address enforcement, and each will have performance tradeoffs that will need to be considered from an
implementation perspective. However, adopting any of these languages would lead to a significant increase in memory
safety.

Potential Solutions

Cost Considerations

There are real costs creating friction against making all code memory safe. Costs fall into three broad categories: Cost of
labor, the cost of performance, and the cost of certifications.

The cost of labor relates to developer effort in reimplementing software components in memory safe languages and can
include developer skills and training, cost and resources, adapting existing tooling and CI/CD pipelines, as well as Quality
Acceptance (QA) testing changes necessary to support the new protection technologies.

In addition to the tooling to ease transitions discussed above, investment in interoperability tooling can help reduce
friction. For example, the existing production-quality interoperability tooling for C++/Rust assumes a narrow API surface.
While this has been sufficient for some ecosystems such as Android, other ecosystems have additional requirements
[17].

The cost of performance relates to how much additional computational overhead or system resources are needed to
implement the memory protection technology. In some embedded devices additional compute overhead may not be
tolerable and the protection options will be largely determined by device performance. In system and application use
cases additional overhead may not impact deployment requirements.

For example, if implementing a solution that provides complete spatial memory protection requires 5% more CPU
overhead or 5% more memory then a company could calculate how many more servers would be needed to perform at
current levels and then weigh it against the benefits such as increased security, fewer service interruptions and
unexpected patching, smaller attack surfaces to manage, etc.

The cost of certification efforts, which are necessary in many regulated industries such as medical, aviation, automotive,
oil and gas, chemical, etc. when making changes to already approved systems must be factored in.

In some cases, executives may find these costs of transition too high. Investments by the industry in developing tools that
can reduce the friction, and therefore the cost, of transition will help change the decision calculus. Moreover, better
software interoperability tooling can make it easier for software ecosystems to adopt memory safe code incrementally,
even while some parts still use legacy code. Compared to complete rewrites, this may result in lower cost at a trade-off of
reduced overall safety. Alternatively, memory safety can be adopted for new projects without impacting legacy code.
When transitions to memory safe code are still not viable, hardware-based mitigation can help reduce risk, and CISA
could help with encouraging hardware vendors to develop and deploy mitigations.

When and where to implement Memory Safety Protections

There are generally three places where memory safety protections can be applied: Before compiling the program, during
the compile time of the program from source code into executable code, and during the run time execution of the
program.

Before Compiling protections use formal verification tools that can detect and reject unsafe code prior to the compilation
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phase. For the best and most consistent results these tools must be built into the Software Development Lifecycle (SDLC)
so that developers cannot accidentally or intentionally bypass them.

Compile time protections typically can often make overarching guarantees about the resulting compiled binary and,
downstream, provide the least performance loss. However, the application of compile-time protection often requires
extensive refactoring and rewriting of existing code.

Runtime protections are generally less performant because CPU time must be spent in verifying program state integrity
rather than executing program logic. The advantage of such protections is that they can be retrofitted into existing, even
already-compiled code (e.g., temporal protection through the substitution of a secure dynamic memory allocator). MSSLs
replace many (but not all) runtime protections with equivalent compile-time protections.

Incremental Rewrite vs. Complete Rewrite

Once the decision has been made to embrace memory safe languages the question becomes how do you integrate it into
your development process. There are two approaches, incremental rewrite or complete rewrite. Each has strengths and
benefits, and your correct answer will be based on your specific needs.

An incremental approach means you identify the most at risk portions of your code and implement memory safety there
first. Static analysis tools such as CodeQL or semgrep can be used to help search source code for areas that would gain
the most protection, such as areas dealing with certificates, authorization tokens, user credentials, API keys, etc.

We have seen that higher fidelity interoperability enables incremental adoption in additional ecosystems, as done for
Swift [18] already, and explored for Rust in Crubit [19].

The benefit of this approach is reduced cost and improved security while avoiding a total rewrite of the code. The
downside of this approach is that deterministic safety across all memory safety categories is not possible until all code is
rewritten.

For longer discussion about a practical approach to these issues please see the Internet Security Research Group (ISRG)
project [20] and Prossimo [21].

A complete rewrite is just that, a fresh start where the developers reimplement the functionality of the old code in a
memory safe language. This gives the developers an opportunity to make large changes that may not be possible in an
incremental approach, but also can be more expensive if you must also continue to maintain the old codebase.

There is evidence that the incremental approach of code rewrite is the most viable for companies with large legacy
codebases. Google has observed a steady drop of memory safety vulnerabilities in the Android operating system as they
gradually replace their codebase with memory safe languages. [22]

In particular, safe, performant and ergonomic interoperability is a key ingredient for an incremental approach. Both
Android and Apple are following a transition strategy centered around interoperability, with Rust and Swift [23]
respectively.

For software developers who cannot wholesale replace existing codebases with an MSSL it is possible to use existing
C/C++ static and runtime technologies to address specific bug classes. Here is an example of a roadmap to address the
majority of memory safety issues within existing native code:

e Uninitialized Use can be mitigated in C/C++ code with automatic initialized technologies [24].

e Heap Corruption can be mitigated using MTE or other memory tagging approaches for spatial safety.

e Type Confusion can be partially mitigated with technologies such as CastGuard [25] for preventing unsafe
downcasts.

13 CISA Cybersecurity Advisory Committee (CSAC)



CISA
CYBERSECURITY

ADVISORY
COMMITTEE

e Heap OOB can be improved by performing Array Access through gsl::span which guarantees memory access will
occur within safe bounds.

For MSSL by replacing components one-by-one, security improvements are delivered continuously instead of all at once
at the end of a long rewrite. Note that a full rewrite may eventually be achieved with this incremental strategy, but without
the risks typically associated with complete rewrites of large systems. Indeed, during that time, the system remains a
single code base, continuously tested and shippable.

Costs and Deployability

One of the criteria in the viability analysis is deployability of an incremental mitigation, which in this context means it
prevents an entire class of memory safety issues, while not requiring a full rewrite of existing native (C/C++) code.
Solutions which require partial changes, but full recompilation are considered deployable. In addition, the mitigation must
also be viable from a performance and compatibility perspective. An example of deployable C/C++ memory safety
mitigation is automatic initialization of stack-based variables [26]. This mitigation deterministically prevents a common
class of memory safety issues called uninitialized stack variables [27]. This is a compiler-based mitigation that can be
enabled for an existing code base without a rewrite. This approach also has low to neutral performance overhead and no
known compatibility issues since the behavior of uninitialized variables is undefined.

Conversely, an example of a class of issues without a known deployable solution is the category of temporal safety. The
known approaches for addressing temporal issues in C/C++ code require garbage collection which lacks a generic,
system wide approach. This would require developers to implement bespoke solutions to existing code that would require
a significant rewrite and potentially introduce substantial overhead. A deployable temporal safety solution for existing
code is an open problem.

Safer languages subsets such as Apple’s Firebloom [28], C++ GSL::Span [29] or Microsoft's Checked C [30] offer
memory safety to existing systems languages like C and C++. Safer language subsets can target both spatial (bounds
constrained) and temporal vulnerabilities (garbage collection) and can be applied to existing code bases without a
complete rewrite and arguably better performance. Unfortunately, they offer less complete coverage of memory safety
issues. These implementations also have significant cost in both rewrite and performance overhead.

Another proposed approach to adding memory safety to non-memory-safe languages is to use formal verification
techniques. The core concept is to make logical proofs of the correctness of software by modeling the software as a set
of logic statements that can be formally proven by automated systems. Formal verification techniques can theoretically
provide memory safety for non-memory-safe languages but also are able to prove other kinds of correctness properties
that can increase the quality of security-sensitive software. To be effective, however, these tools and techniques must be
integrated into the daily workflow of the engineering team working on the software so that all code changes are analyzed,
and any bugs identified prior to next steps such as compilation. Furthermore, scaling these techniques to entire code
bases, and ensuring sound detection of memory safety vulnerabilities remains an open research problem and, thus,
these technigues may not be applicable in many use-cases without further research. [31]

Finally, there are Architectural improvements such as CPU based technologies like CHERI [32], ARM [33] MTE, Intel
Memory Tagging [34]. These CPU based architectural improvements range from complete implementations (CHERI) to
non-deterministic targeted approaches (MTE). CPU based implementations have the general property of being high-
performance and can be applied to existing code bases (CHERI Linux/BSD). Unfortunately, they require new hardware
which varies across vendor implementations. It also has the high cost of allocator and possible key API rewrites and
ultimately may have no deterministic guarantees.

General Conclusions

The TAC believes that memory safe technologies exist to address multiple use cases. From performance constrained
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embedded devices to general use systems and applications, memory safe hardware and language options now exist
where they may not have in the past. There is now a path to address existing legacy needs while simultaneously
developing new components in safer languages.

Workforce development and education will play a key role in the adoption of skills that are needed for the long-term
transition to memory safe technologies. In cases where performance and form factor constraints are not an issue there
are many more existing options today with commonly used system and application-level languages. In cases where
performance and form factor constraints exist and room for change is limited, the hardware and performance-oriented
systems-based language solutions are currently the only options.

Different ecosystems and form factors will require different short-term, mid-term and long-term solutions depending on

performance, manpower, and regulatory needs. In some cases, implementing memory safe technologies with existing
languages may expedite improved memory safety in the near term.
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Timeline Embedded Devices & RTOS General Computing OS and apps
Short-Term e Build a Memory Safe Roadmap e Build a Memory Safe Roadmap
1-2 Years e Use safer libraries and extensions in C and e Use safer libraries and extensions in
C++ Cand C++
e Use MSL verification tools that can be run e Use MSL verification tools that can
as part of the build step [35] be run as part of the build step [35]
e Conduct performance cost comparisons e Begin to build the necessary
between safe features of legacy languages toolchains and integrations
(e.g. C/C++) vs. MSSL
Mid-Term e Write new code in MSSL that support e Use MSSL for all new projects where
3-5 Years embedded use cases (e.g. Rust) appropriate
e Adopt hardware that has memory safe e Incrementally rewrite the most
capabilities (CHERI/MTE/etc.) critical code in a MSSL
e Incorporate memory safety testing
tools in the build process
e All major CPU vendors support
memory tagging
Long-Term e The MSSL toolchain is readily adoptable by e The MSSL toolchain is readily
5+ Years all software development teams, all major adoptable by all software
IDEs and static tools have first-class development teams, all major IDEs
support for MSSL and static tools have first-class
e Replace existing RTOS with memory safe support for MSSL
RTOS such as Tock [36] e Companies use MSSL for all new
e Implement a plan to upgrade or replace old code with attack surface

and legacy EOL products with memory safe
products

o All major OS system allocators
support memory tagging and readily
available for use for legacy C/C++
code
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CISA Questions

Broadly speaking, to achieve the objectives implicit in the six questions posed by CISA, there are six major themes our
recommendations fall under: Collaboration with a broad ecosystem of strategic partners, inform and influence standards,
create and promote tools, academic and education engagement, create pilot programs, and instill a memory safety
mindset in the procurement process. The recommendations were informed by a series of briefings involving participants
from various cybersecurity communities.

Question 1: How can CISA help technology manufacturers (including open-source projects) migrate toward using

memory-safe code as a default?

Discussion:

Making the decision to switch to a MSSL requires that all the prerequisites are in place for a successful transition. A
decision maker may wish to use a MSSL, but still needs to make sure all the current practices and tooling they currently
use support it. That could mean a company's build, test, deployment, and production environments all have the required
toolchains and integrations required to replace the current solutions. Essentially the build environment needs to be
mature enough for a switch to occur. Because of the many moving parts there are opportunities for CISA to identify and
improve slowdowns or roadblocks to MSSL adoption.

CISA, as part of its Secure By Design initiative [37] has started publishing guidance for “Shifting the Balance of
Cybersecurity Risk: Principles and Approaches for Secure by Design Software” and released its first document in October
2023 that includes recommendations for prioritizing the use of MSSL. [38] This initiative covers more than just the use of
MSSL and has three key principles: (1) Taking ownership of their security outcomes, (2) Adopting radical transparency,
and (3) Taking a top-down approach to developing secure products.

Findings:

Technology creators need stronger market signals, including from the government, to help them understand why
enabling and migrating to MSSL is vital to the safety and security of society. Incentives and consistent messaging across
all areas of government that this issue needs to become a requirement would be one way of showing the market that the
use of MSSL will be prioritized.

The Secure By Design initiative has recommendations for companies to develop and adopt a memory safe roadmap that
includes:

e Defined phases with dates and outcomes: Evaluation of memory safe programming languages, a pilot phase to
test writing a new component in an MSL or incorporating MSL into an existing component, threat modeling to
find the most dangerous memory unsafe code, and refactoring memory unsafe code.

e A date for memory safe programming language use in new systems.

e Internal developer training and integration plan, an external dependency plan, a transparency plan and
developing a CVE support program plan.

Example roadmaps can act as templates for companies, which would help accelerate the decision-making process and
speed MSSL adoption.

CISA has a GitHub account [39] and should use it to greater effect to publish resources related to the adoption of MSSL
and the Secure By Design initiative.

Recommendations:
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1. Work with the R&D ecosystem across government and industry to create and update tools that enable usage of
memory safe features of existing languages and hardware.

2. Add memory safe tools to CISA’s existing GitHub to highlight open-source solutions.

3. Advocate for memory safety in Computer Science, Embedded Systems and Engineering education curricula, for
example by maintaining a list of university curricula that include memory safety coursework as well as
incentivizing ongoing education of memory safe languages.

4. Continue to develop and expand the existing CISA “Secure By Design” initiative, publishing memory safe
migration roadmaps and supporting materials, including cost/benefit analysis to help inform company transition
plans.

5. Conduct performance studies and comparison between MSSL vs. legacy languages to help answer performance
and cost concerns within embedded device communities.

Question 2: What key partnerships should CISA forge to promote memory safety?

Discussion:

CISA can leverage its unique role sitting at the nexus between commercial, civil-society, regulatory, non-regulatory, law
enforcement, military and intelligence organizations to drive a consistent message and tooling to accelerate
manufacturers towards safer and more secure practices.

Within the government, CISA can encourage regulatory partners to address memory safety as an imperative in their
public notices, which can help shape dialogue and market forces to prioritize this issue across multiple sectors.

Within industry, CISA can work with major hardware, firmware and software manufacturing companies to help drive them
towards increased memory safety practices. Those improvements can then be adopted by the rest of their supply chain.

Finally, partnerships with industry and open-source projects developing memory safe technologies and tools will help
build relationships that can be used to better provide advice when producing the types of documents suggested by this
report and the Secure By Design initiative.

Findings:

Building trust and increasing collaboration will be necessary ingredients for better policy outcomes with the various
manufactures, associations, and standards bodies and could shift the landscape in a memory safe direction at scale. The
capacity and resources of such a collaborative group could address market, technology, supply chain, regulatory and
policy issues more comprehensively than addressing them all individually.

A memory safety council, populated by stakeholders throughout the ecosystems, could provide a useful place to help
coordinate these efforts. Similar projects have been done in the past via the Enduring Security Framework (ESF) [40] to
get TPM chips in most general computing products for example. Critical infrastructure sectors have the Critical
Infrastructure Partnership Advisory Council (CIPAC) that helped drive sector councils, national response strategies,
information sharing and improvements to infrastructure security practices across all critical infrastructure sectors.
Outreach could start with the Prossimo Project, and other projects currently building operating systems entirely in Rust
[41]. Their experience and insights will be invaluable.

CISA, working with universities and other research institutions, to foster investment in research and development on
temporal protections could lead to new techniques to resolve the missing path forward for temporal safety. Finally, there
needs to be a pipeline of programmers ready and able to work with memory safe technologies. CISA can work with
universities and academics to determine the need for further educational programs that will increase the base of
programmers able to work on memory safe projects and transition legacy code.

Recommendations:
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1. Create a memory safety council that invites both embedded and general computing stakeholders and educators
to the table. Should include silicon, RTOS and general computing stakeholders to ensure coverage of both ICS
OT and IT ecosystems.

2. Encourage industry standards groups to take on memory safety standardization efforts. One example could be
funding research projects with legacy unsafe language standards groups such as C and C++ to update
standards and tools to default to memory safe features.

3. As noted in Question 1, Recommendation 3, advocate for memory safety in education curricula.

4. Advocate within government for funding to help support the foundations that support key MSSL projects, such as
the Rust Foundation.

Question 3: Are there areas where the Federal government is holding adoption of memory-safe programming languages
back? If so, how can CISA help address these areas?

Discussion:

Collaborate with regulatory agencies to ensure their efforts are not preventing regulated markets from migrating to
memory safe technologies due to regulatory hurdles to make major changes to operational environments. Oftentimes
some industries are reluctant to make major changes, such as regulated critical infrastructure sectors, because of
potential impacts to or conflicts with existing or changing regulations from government regulatory agencies.

CISA could leverage cross agency forums to help guide regulatory agencies in putting out memory safety friendly orders,
notices and public position statements that encourage or provide guidance to regulatory sectors. Furthermore,
government agency procurement practices could slow down or have conflicting requirements that could negatively
impact or potentially deter adoption of memory safe technologies on existing or near future projects.

Findings:

In the past CISA collaborated with the National Labs, MITRE, JHU APL and others to help drive the Operating Technology
market towards creating specific extensions of existing IT defensive tools to support OT.

CISA also has had success in working with this same ecosystem to push for SBOM tools and standards. [42]

Taking the lessons learned for these two past efforts, and others, CISA could collaborate with the Federally Funded
Research & Development Centers (FFRDCs) ecosystems such as the national labs and MITRE to create and release tools
that enable the usage of safer libraries and functions in existing legacy unsafe languages such as C and C++. Portability
tools could be created to convert libraries and functions of unsafe languages into memory safe language code such as
migrating C language developed drivers and compilers to Rust. These tools should then be released to the public to
expedite the open-source community’s ability to adopt MSSL faster. CISA has produced guidance for SBOM and tools
plus guidance for ICS OT before leveraging the FFRDC community and we are confident there is a role for CISA to play in
memory safe technologies as well.

Recommendations:

1. Work to ensure that independent regulatory agencies like FERC, FCC, FTC, FDA, EPA adopt cyber regulations that
enable and do not degrade memory safety efforts throughout the supply chain. This may involve assisting in
reviewing existing regulations for items that may run counter to the adoption of MSSLs.

2. Work with government standards organizations to develop standards that include the use of memory safety
technologies and assist in reviewing existing standards to identify any that run counter to memory safety
adoption.

3. Ensure existing FFRDC efforts implement CISA memory safety recommendations and practices and produce or
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update tools to further enable memory safe adoption.

Question 4: How should CISA factor memory safety into federal government procurement processes?

Discussion:

The federal procurement process provides an opportunity to promote memory safety in government systems, as well as
provide a market incentive to developers. Federal Acquisition Regulations (FAR), Office of Management and Budget
(OMB) circulars, agency specific directives and executive orders drive much of the existing procurement practices of the
federal government.

CISA should use its relationships with federal civilian agencies and systems, in collaboration with DoD, DHS Procurement
leadership, OMB and the Office of the National Cyber Director (ONCD), to drive memory safety requirements into
improved procurement practices and secure by design and secure by default requirements that will be implemented,
which would align well with the 2023 National Cybersecurity Strategy Implementation Plan.

CISA can recommend to Federal procurement councils and decision makers that memory safety requirements, developed
using multi-stakeholder public-private partnerships, are included in all the updated cybersecurity requirements to
improve federal procurement practices. This will send a significant market signal that this is an imperative, and a
requirement, not an option. This is similar to the current government efforts for requiring SBOM or government Cloud
security requirements being enforced via FedRAMP.

It is important to have a whole of government approach to make this an effective strategy. If a few agencies insist on
memory safe code, while most do not, a supplier could decide that it simply is not a large enough market to put in the
effort to improve memory safety. Likewise, this may require discussions with software developers to develop a realistic
roadmap, and close attention to reducing the cost of transitions. As discussed in this report, cost of transition creates
friction and the procurement tool will work best in combination with efforts to reduce friction and cost.

Findings:

The federal government has tremendous purchasing power, and thus its procurement is a powerful tool to align
commercial incentives with the public need to enhance memory safety in our nation’s systems. The ability to sell to the
government may change the equation when a product vendor or software developer is considering the costs and benefits
of implementing memory safe hardware, firmware and software. Once developed, that improved technology will be
available to other customers lowering the barriers for others to enter the market.

To this end, CISA should collaborate with ONCD and OMB to study requiring government contractors to use memory safe
products including hardware and programming languages, as well as memory safe functions in unsafe languages, for all
updates to old products provided to the government, as well as any new products. Making changes to FAR and
collaborating with DoD on DFAR would drive requirements in federal acquisition regulatory requirements. In addition,
implementing an SBOM requirement to identify where memory-unsafe code may be included in a technology project.

Recommendations:

1. CISA should make recommendations to DHS and OMB procurement councils to include piloting memory safe
product requirements in their cyber security purchasing requirements for providing products and services to all
federal agencies.

2. Collaborate with NIST for the consideration of memory safety updates to the existing requirements in NIST SP
800-53 Security and Privacy Controls for Information Systems and Organizations, SP 800-161 Cybersecurity
Supply Chain Risk Management Practices for Systems and Organizations, SP 800-218 Secure Software
Development Framework (SSDF) and similar guidelines.

3. CISA should recommend to DHS S&T to fund pilot projects to help industry create memory safe tools and
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products to increase the availability of memory safe products on the market.

Question 5: What are the major problems that CISA can advise the technology industry to solve to make all products
memory safe? Examples might include prioritizing investment decisions to move towards memory-safe code, ensuring
the next generation of computer scientists train in memory safe languages, and understanding software supply chains
(often open-source) that often include memory-unsafe code.

Discussion:

Existing solutions that can address multiple memory safety issues exist. However, not all existing solutions address all
memory safety issues at scale. Some problems can be solved in hardware and others can currently only be solved by
programming languages. Spatial safety is generally believed to be scalable with existing solutions.

However, there are no scalable, system-wide protection mechanisms or clear paths forward for temporal memory
protection for legacy code without complete software rewrites in MSSLs. This is exacerbated by complex applications with
unique methods for managing their object lifetimes, complicating adoption of temporal safety retrofitting. Microsoft’'s
memGC for Edge would be an example of implementing bespoke garbage collectors in C/C++.

Memory tagging is an example of an available and impactful tool against memory safety issues. The introduction of
tagging via MTE into mainstream mobile phones such as the Pixel 8 are a concrete demonstration that this technology
can be scalably adopted.

There are past successful efforts CISA can be informed by and emulate for the adoption of MSSL. For example, the
President’s National Strategy to Secure Cyberspace (2003) [43] clearly stated the need to “secure the mechanisms of
the Internet by improving protocols and routing.”

To meet this need DHS S&T, created the DNSSEC Deployment Initiative. “DNSSEC has been developed to provide
cryptographic support for domain name system (DNS) data integrity and authenticity. DHS sponsors a community-based,
international effort to transition the current state of DNSSEC to large-scale global deployment, including sponsorship of
the DNSSEC Deployment Working Group, a group of experts active in the development or deployment of DNSSEC. It is
open for anyone interested in participation.” [44]

This work is credited with saving 5-10 years of DNSSEC adoption time. Doing the same for MSSL now could yield equally
large benefits.

Findings:

There are many edge cases and outstanding issues that can benefit from additional study. Working with the MSSL
communities CISA can act to catalog these issues, priorities, and fund work to accelerate solutions and adoption much
like the DHS S&T DNSSEC example above.

e Further academic and industry research would help determine what is technically and theoretically
possible. In particular, answering the following questions would help resolve or mitigate the issues with
temporal or spatial safety, and determine which effort will be most effective. Does adding temporal
protections to hardware involve many incremental and dedicated CPU features that when combined
with compilers grant a level of temporal safety?

e Are certain temporal problems ripe for hardware runtime optimizations, or must they all be mitigated
with no hardware assistance?

e What work has been done in this space? What were the outcomes?

Moving forward, all major silicon vendors and architectures should accelerate plans to include tagging in silicon. OS and
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application vendors should follow suit and commit to adopting these capabilities. Accelerated adoption of memory
tagging and other mitigations by hardware manufacturers would help mitigate memory safety risks, especially for those
which have a clear path forward in hardware. In software, stopgap measures can be adopted. For example, C++
developers should default to GSL::SPAN, ASan, Cast Guard, and other appropriate tools to gain memory bounds checking
enforcement

For Rust there remain open questions which additional investment would help resolve, for example, when integrating an
unsafe language. How to guarantee C++ code does not violate Rust code's exclusivity rule, which would create new forms
of undefined behaviors [45][46].

Finally, MSSLs are being introduced into the software development lifecycle without a commensurate effort in earlier
Computer Science education. There is very little coursework dealing with memory safety in academic institutions, and
memory safety is not included in accreditation criteria for Computer Science.

Recommendations:

1. CISA should request the inclusion of memory tagging technologies into the roadmap of all major silicon vendors
powering cloud, pc, mobile, and loT devices leveraged in national infrastructure.

2. Request compiler and IDE vendors, both open-source and commercial, to default to secure options such as
Span, InitiAll, and Castguard for C/C++ compilers and common libraries (C/C++ Standards).

3. Collaborate and fund workforce projects with academia and open-source communities for migrating to MSSL,
and related tools necessary to implement memory safety features of legacy languages in C and C++ libraries.

4. Encourage accreditation bodies to include memory safety concepts in Computer Science and Systems
Engineering degree program guidelines (This complements the education Recommendations in Question 1 and
2).

5. Help identify and fund or study outstanding issues slowing adoption in MSSL.

Question 6: How do we ensure that CISA’s memory safety guidance gets traction beyond technical leaders working at
software manufacturers, including with business leaders and other U.S. government agencies?

Discussion:

In our discussions with the technical community, a universal observation was that there is a need for memory safety. The
community recognized that failure to address memory safety, in products and in the supply chain, could lead to
production downtime, reputation hits to business or direct impacts to product quality and safety for customers. In some
cases, these issues may also involve product recalls, impact to stock prices and regulatory fines or legal proceedings
against their business.

The primary challenge is getting executive business leaders to prioritize and execute on a transition to memory safety.
Thus, the technical community needs assistance in amplifying the importance of memory safety, so that business leaders
will appropriately weigh the need to move to MSSL sooner rather than later when balancing competing priorities. This will
include reaching out to startups, venture capital and incubators to help them understand the value of transitioning to
memory safety in existing projects, as well as including memory safety in a Secure by Design new project.

In addition to a strong message on the importance of memory safety, executive decision makers will need the
information necessary for them to have the confidence that a transition to memory safe code is a good decision. This
information will include implementation studies and lessons learned from transitioning a project into a MSSL. In addition,
decision makers could use research papers and other documentation that shows that an investment in memory safe
code is fiscally responsible, including helping show the impact that technology, suppliers, providers and partners can
have on their business and customers.
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Furthermore, the academic, research and standards communities could help by adapting existing research and
standards towards enabling the use of memory safe technologies. R&D funded projects and international engineering
standards need to enforce and endorse memory safe technologies and practices.

Findings:

CISA can play an important role in helping the technical community persuade business leaders and non-technical
executives to prioritize memory safety. First, CISA, in coordination with other government agencies, should help provide a
strong signal highlighting the importance of memory safety, which will amplify the voices within the technical community,
and help get key non-technical decision makers to give those voices more credence. This will help distinguish the
memory safety effort from all the other initiatives competing for attention.

Second, CISA can work with industry and academia to help encourage the development of white papers, research reports
and other documents that can provide examples and analysis which the technical community can use to show decision
makers that an investment in memory safety is fiscally responsible. CISA could also provide a central repository to make
these documents more easily available.

Third, CISA should leverage existing sector leadership coordination forums to drive home that memory safety needs to be
considered in third party risks, just as with the software bill of materials efforts. The additional transparency provided by
efforts such as the SBOM can help identify what components use memory safe technologies, their versions, and settings.

Finally, key efforts CISA will need to focus on with executives include:

Shaping the narrative so that executives understand why this is important and not just a technical problem.
Pointing out how addressing the attack surface can decrease business disruptions.

Pointing out the supply chain risk to their businesses and industries.

Educate executives that memory safe requirements and questions should be added to existing third party risk.
questionnaires, practices, policies, and procedures as additional third-party risk line items needing to be
accounted for.

Recommendations:

1. CISA, in coordination with others, should publicly signal to decision makers that memory safety is important, and
decision makers should pay attention, through actions such as those identified in this report.

2. Encourage the development of white papers, research reports, and supporting documentation to assist decision
makers in having the information necessary to justify investing in memory safety and provide a public repository
for this documentation.

3. Educate executives in existing critical infrastructure sector coordinating councils on the need for MSSL, including
in the supply chain.

4. Update the existing CISA SBOM and HBOM guidance to require disclosure of details (all, some, or none as an
example) if each component was developed with MSL or technologies to better inform consumers of product
capabilities.

5. CISA should recommend that incentives like legal safe harbors for following best security practices that can help
encourage industry to move toward memory safety, be included in legal and regulatory decisions that may adopt
best security practices. CISA should advise legal and regulatory agencies to be sure that these practices are
standards agnostic, future focused, and do not create perverse incentives, such as abandoning software
projects to avoid potential liability.

6. As part of the Secure By Design initiative create or support a public tracker that lists what important software is
available in a MSSL to create public awareness and peer pressure.

7. Include the academic community and connect them with industry and government through efforts such as
sponsoring workshops on memory safety with the top academic conferences.
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https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign 1025 508c.pdf
https://github.com/cisagov

Enduring Security Framework ESF (nsa.gov)
https://github.com/flosse/rust-os-comparison
https://www.cisa.gov/sbom
https://www.dhs.gov/science-and-technology/csd-sp
https://www.dhs.gov/xlibrary/assets/pso _cat st.pdf
https://dl.acm.org/doi/pdf/10.1145/3428204
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-syntax/
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